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Fig. 1. Layout of H-plane switch.
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Fig. 2. Layout of recent switch.

A valid comparison also requires the use

of similar diodes. The IN419 seems to be
no longer available in the configuration used
in 1961, but Philco switching diodes which

are still available yielded similar results.
Because of its simplicity (Fig. 1) the

earlier switch offers the advantages of 1)
comparatively little measurement data or

calculation required for its design; 2) good
matching almost everywhere in the band

for the “pass” condition, which comes about

from the close placement of the diode to the

junction (wider bandwidth of attenuation,

as much as 2 per cent, can also he obtained
from this feature); and 3) the ability to

attenuate any frequency in the band, as

determined solely by the position of the
short. This switch is, in fact, most often
used with a sliding short, so that the operat-
ing frequency can be changed at will. Diode
placement favors the use of an H-plane tee
for this switch, while the recent switch
(Fig. 2) could supposedly be built equally

well in the E or H plane.

An evident disadvantage is that the

earl y switch must operate into a better
match because of its close involvement in

the junction. But because of these considera-

tions, it is recommended that this switch be

considered in applications using the recent
design, especially in laboratory work, where
flexibility is often desirable.

D. L. REBSCH

N1icrowave Physics, Aerospace Div.

\Yestinghouse Electric Corp.

Baltimore, NId.

A uthor’s Comment4

Although our narrow-band waveguide
switchl is of the same generic type (a band
reject design in waveguide using diodes) as

the one previously described, it is difficult to

4 Manuscnpt received June 25, 1965,

envisage any two switches in this category

as different as these, both electrically and
mechanically. The most striking difference

in performance is evident from our Fig. 6,

where it is shown that the isolation curve

shifts by about 120 Me/s for a change in

diode state. According to Rebsch’s corre-

spondence of 1961,2 the isolation of his
switch is only present when the diode is
forward biased. Perhaps Rebsch can be
more specific about the electrical similarity

he sees in these switches.
The central aim of our paper was to

present a switch design which parallels the

synthesis of passive band reject filters, and
which therefore could be used in the design

of switches for a wide variety of applications.
By this procedure many of the difficult im-

pedance matching problems associated with

other types of switches are avoided. The
degree to which this aim has been achieved
is evident from our Figs. 6 to 8 which show

a comparison of measured and computed
responses as an example of the effectiveness
of the synthesis procedure. It is significant
that oLl~ design procedure is quite insensitive
to the precise nature of the diode (and
mount ) impedance in either of the two states.

Jt’e agree that Rebsch’s design presents
matching problems, especial] y in the design

of cascaded stages for the pass condition.
His other comments are rather general

and therefore difficult to answer specifically,

but we suggest that most engineers do not
mind making calculations and measure-
ments if the results are predictable. As a
matter of fact, to be able to do so, is a
rather delightful experience not encountered
as often as one would like.

H. ]. PEPPIATT

A. V. MCDANIEL, JR.

J. B. LINKER, JR.

General Electric Co.

Lynchburg, Va.

Acceptable Mode Types for

khornogeneous Media

This correspondence is prompted by

Holmes’s paperl in which he presented a
study of the use of the WKB approximation

for the solution of the wave equations in a

rectangular waveguide inhomogeneously

and continuously loaded across the broad
dimension. I would like to point out the
form of the acceptable mode types in such a

waveguide.
Maxwell’s equations are

E = – j.@ (1)

E = j&Z (2)

Assume that p and c are functions of posi-
tion. Taking the curl of (2) and substituting

(1) we get

VXVXE=V lne X(VXZ?)+k277 (3)

Manuscript received February 23, 1965.
Z D, A. Holmes, ‘sPropagation in rectangular

waveguide containing inhomogeneous, anisotropic
d~electric, z IEEE Tvazs. os MKmwme Themy mzd
Techniques, vol. MTT-L2, PD. 152–5, March 1964.

where

and

Since

then

with

Vlne=D
G

(4)

(43)
P

As a result, the left-hand side of (3) may be

written

v XV XB=V(V.17) –V2Z

—— – V(~. Vlnp) – V2H (9)

and (3) becomes

(v’ + W)Z7

=(VXZ?) XVln. -V(EVlnp). (10)

Similarly,

(V2 + ~z)~

= (V XZ)XVln p–V(Z.Vln,). (11)

Equations (10) and (11 ) are i.he wave equa-

tions for inhomogeneous media.
Consider now a rectangular waveguide

in which ~ and/or e are functions of y only.
As a result,

(1.2)

(13)

Equations (14), (15), and (16) are the com-

ponents of (10) when expanded in the rec-

tangular coordinate system.

(v’ + k’)H.

(v’ + L“)H,

(v’ + /i’)H,

Expressions for the components of (11) are
identical in form and, with the obvious sub-
stitutions, the following argument hc)lds

for electric fields as well.
Take x and y as the transverse coor-

dinates and z as the direction of propaga-
tion. We now look for modes in which one
of the components of magnetic field is mm-
existent. The possibilities are as follows.

H.=0

From (16),

This can occur when

1)pe = constant, being a trivial case.
2) Hti #~(z). Impossible for a wave
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traveling in the z direction unless ZYV= O as
well as H.. This implies a TEM wave which
cannot exist in an enclosed region. At any
rate, consideration of the electric fields of a
TEM wave in such an inhomogeneous me-
dium will show that E, must also disappear.

Only E. and AL are then left and that is an

impossible solution.

Hz=O

From (14),

(18)

which is satisfied when

1 ) p,= constant (as the preceding).
2) LT. #j(x). This is a quite acceptable,

although peculiar, case corresponding to
solutions of the TEOn type with electric field

along x. Hu = O also satisfies (18) but, as &
is missing, this is an impossible solution of
Maxwell’s equations inside a waveguide.

The analogous study of (11) leads to
E, #f(x) which means that EV = O. This in-

dicates again that TEo~ modes are accept-
able. (Notice that a TEM wave traveling
in the y direction would be permissible on an
open structure. )

I&/=o

Equation (15 ) is identically zero. The

wave equations for the magnetic fields are

now

which can have no inconsistencies between
them. If the solution for ~ can be found,
then the electric field is given by (2 ).

The result of the preceding analysis is
that longitudinal-section (LS) modesz (Ey = O

or Hu = O) are shown to be the normal ones
for such a waveguide as they are the only

ones not requiring the stipulation of im-

possible or restricting conditions. Unfor-
tunately, Holmes has developed his theory

in terms of TM or TE modes (i.e., H2 = O

and E,= O, respectively). There is no ap-
parent reason, however, that the theory

cannot be easily altered. That part of the
paper dealing with TEo~ modes (which are
a particular type of LS mode with Eu = O)
is apparently correct,

By an argument almost identical to that

which has gone before, it follows that LS
modes are inadmissible solutions when

w =.f(z). In this case, TM and TE modes
are required. Therefore, TEo, modes, which
are of both the TE and LS types, are valid
for waveguides in which p~ is a function of

the direction of propagation and of one
transverse coordinate.

A slab-loaded waveguide represents the
limiting case of a rapid but finite change of,
say, dielectric constant. It has long been
knowns that one cannot choose just any

z R. F. Harring ton, T&ze-HaYmoxiG Ekctmmag-
n:~c Field. New York: McGraw-Hill, 1961, pp. 152-
155.

a L. Pincherle, “Electromagnetic waves in metal
tubes filled longitudinally with two dielectrics, ”
Pky$. Rew., vol. 66, pp. 11s-30, September 1 and 15,
19’44.

mode type and attempt to match transverse

components at the boundary without the
danger of inconsistencies in deriving the
eigenvalue equation. Matching only one
electric and one magnetic component across

the interface does not ensure that the other

transverse components are likewise matched,
The reason for such inconsistencies in

boundary matching is evident. The regions
being considered are not simply the dielec-

tric and air ones. There is another—the

transition region—and modes must he
chosen that are appropriate to it as well.

When such a transition region is of vanish-
ingly small extent, the retardation across
it is negligible and the tangential fields (or
normal fluxes ) may be equated through it.
This approach obviates the necessity of
solving the inhomogeneous wave equation

explicitly. In spite of this simplification, the

normal modes must still be of the type, at
least across the inhomogeneous region.

It was rather optimistically thought that,
as a direct extension of the rectangular
waveguide resu Its, modes of the form
E,= O and AT, = O would prove satisfactory
for a radially inhomogeneous circular guide.
Although it is impossible to find modes with

a missing radial component (except for the
TE,. and TM,.), a linear superposition of
degenerate TE and TM waves can be

formed in such proportions that either of the
radial components can be made to vanish

at any chosen radius rO. Then, it was hoped

that these new modes would be solutions for

a circular guide loaded with a rod of that

radius.

For a radially inhomogeneous guide,

Vlne=zZ, ~lnc (21)

and

Vln,u=tir~ln~. (22)

Expanding (10) in cylindrical coordinates

and separating components, several possi-

bilities can be studied.

H,=O

We find, from the expression for the r
component, that

:+ H+ = O. (23)

Therefore

f~+ # f(+). (24)

Only the TMom mode satisfies both (24) and

H,= O. This shows immediately that a com-
plete set cannot be formed in this way. The

other cases follow.

H4=0

From the ~-component expression,

28
— —H, = –~4H,~ln (w).
Y &tI

(25)

This holds for

1) TEon modes and when
2) per’ (or kr) is a constant. This places

a restriction on the loading.

Ha=O

The z component gives

which is true for

1) TMofi modes.
2) ~e-constant, This is the trivial case of

uniform loading.

A similar analysis of (11) will give iden-

tical results if, in the preceding TMom and
TEon are interchanged and the components

of ~ are substituted for those of H. Then,
since five-component modes are in general

unsatisfactory, it is clear that six-component
hybrid modes must be used. Hybrid modes
are also found to be required for circum-
ferential inhomogeneities, again with the
exception of the TM O. and TE”n wave types.

For z inhomogeneities, TM and TE modes

are acceptable.

.4. WEXLER

Dept. of Elec. Engrg.

Imperial College,

London, England

D. A. Holmes4

I particularly appreciate and welcome

It’exler’s articulate and rather adroit com-
ments because they permit me to compen-

sate for the brevity from which my paperl
suffers. In the first place, I wish to point out

that the results presented in that paper were

derived for a nearly uniaxial material, i.e.,
&(x)~Kv(x). Upon re-examination, I find

that the distinction between KC(X) and
Ku(x) is not worth retaining. I suggest that
the previously derived solutions be applied
only to a strictly uniaxial material oriented
such that the optic axis is parallel to the
direction of propagation. This can be ac-

complished by using the definitions

Kz(x) = K.(x) = K,Jx), K.(.Y) = K,(x), (27)

where K.(x) and K.(x) can be called the

ordinary and extraordinary dielectric con-

stants, respectively. In keeping with (27), I
shall consider a uniaxial material in the work

to follow.
As a prelude to further discussion, con-

sider the following mathematical develop-
ment. By assuming exp(~wt - I’z) variations

in all electric and magnetic field compo-
nents, the Maxwell curl equations can be

written in the form

gE,, = – T(dEJtly) + jquO(dH,/%r),

gE= = – r(c?E,/d%)-- jwo(dHz/dY),

gHV = – I’(c3HJ8y) – @qK&)(dEJ8x),

gH= = – r(wfz!a~) +j@6dco(x)(aE,/aY),

aEu/& — dE./a>1= – jwoH,,

dHY/&r — dHJily = jweoK,(x).?,,

where

g = rz + ko2Ko(x).

(28)

(29)

(30)

(31)

(32)

(33)

4 Manuscript received April 12, 1965.
~ Except when specified otherwise, my notation

here is the same as that used in my earlier work.1
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By assurn~ng that

H, = O, E, = EVTM(X) *sin (tnmy/b), (34)

and substituting (34), (30), and (3 I ) into
(33) we

la—.—.
aTM az

where

btain- ““ ““ ‘ ‘

8$T~

I
— + 6TMWT. = O,

‘TM ax
(35a)

Ko(x)

aTM = rTM2 + k02&(x) ‘
(35b)

fl,=s =
K.(%) mrr ‘

()
—— _.

b
(35C)

mm

By assuming that

E. = O, H. = H#TE(x). cos (*lry/b), (36)

and substituting (36), (28), and (29) into
(32) we obtain

&3ffJ3+ PTIWTE =0, (37a)

where

cYTE = [rTE2 + h02&(X)]-1, (37b)

()
2

pTE%=L– y- . (37C)
ffTE

Although I have attached TE and TM

subscripts to various quantities in (34)–(37),

the preceding development clearly does not,
in itself, justify a decomposition into TE

and TM modes. When (34)–(37) are used to
obtain the solutions listed in Sections I I and
III of my previous paper,l using the def-
initions (27), it is found that the listed solu-

tions do not rigorously satisfy the Maxwell
curl and divergence equations. Imbedded in

the W’KB approximation, however, is the
restriction that KO(X) and K.(x) are slowly

varying functions of z It is of interest to
discuss the logical limit of the slow varia-

tion case, namely, that of a homogeneous
medium for which KO(X) =KO, KC(X) = K,,

where K. and K. are constants. For a
homogeneous uniaxial medium wholly filling

the rectangular waveguide, a decomposition
into TE and TM modes is valid; for this
case we find

+TE = cos (t27*/a), (38a)

+TM = sin (f27rz/a), (38b)

rTE2 = (ftST/fJ)z + (PZ~/a)2 – k02Ko, (38c)

rTM’ = [(mr/b)2 + (ftT/O)z]. (Ko/K.)

– k02K.. (38d)

The electric and magnetic fields found from
(38 ) satisf y the boundary conditions for per-
fectly conducting walls and satisfy all of the

Maxwell equations.
In approaching the slow variation case,

my reasoning was more physical than math-
ematical. In light of the preceding discus-
sion of the homogeneous case, it seems en-
tirely reasonable that propagation in a

slightly inhomogeneous medium can be
classified into a mode structure which is

nearly TE or TM. Based on this physical
reasoning, my procedure was to semw%
for TE and TM modes with the results
(34)-(37). WKB solutions never rigorously
satisfy the differential equations from

whence they came, however, the particular
solutions given by mel do satisfy the bound-
ary conditions at the waveguide walls and

represent approximations which become

exact in the homogeneous limit.

I feel that the general area of slight in-
homogeneities or slow variations is a “no

man’s land” which, undoubtedly, may be

approached on many trajectories. For the
specific problem which I have considered, I
cannot claim, at this time, that my treat-

ment is more general than, or preferable to,
an alternative approach.e My contribution
is that the TE and TM mode IVKB ap-

proach provides predictions which the ex-

perimentalist can test in the laboratory.

D. A. HOLMES

Dept. of Elec. Engrg.

Carnegie Institute of Technology

Pittsburgh, Pa.

8 Observe that Wexler’s discussion of longitudimd-
section electric (LSE) and ,longitud@al-sec,tion mag-
netic (LSM) mode propq~at?on m an motroplc medium
would reqmre modtficatlon m order to allow inclusion
of a uniaxially anisotropic medium.

A. Wexler7

Holmes is quite correct in noting that
my comments apply to isotropic media and

require modification if an anisotopic me-
dium is considered. To follow his suggestion,

one interesting case will now be investigated.
The components of the tensor permittivity

are taken as defined in (27). The permeabil-
ity is taken to be a constant scalar at the

free-space value MO. As I previously assumed
the medium to be a function of y, this cor-
respondence will continue in that way.

Holmes takes it to vary along x but this

should cause no confusion.
Taking the curl of (1), substituting (2),

and rewriting the left-hand side of the
wave equation, we obtain

V (V .~) – V2~ = k02(tiJfJy)Ez + tiuK. (y)EV

+ 2LKo(y)Eg) . (39)

Since v. ~ = O, we find that

+ K,(y) ~ = O. (40)

The first two terms of (40) can be sub-

stituted into the expansion of V ~~, giving

v.~ = (1 – K,(y) /Ko(y)) ~

r3K.(y)
– (lZJK,Jy)) ~ . (41)

By substituting (41), the y component of
(39) is found in a convenient form. When
this is done we may put EY = 0, producing
the following condition for the existence of
longitudinal-section electric (LSE) modes:

~ [(1 - K,(y) /K.(y)) ~] = O. (42)

Equation (42) holds when E,= O. And so,
TEw modes are of a legitimate type in
this uniaxially anisotropic medium. The

7 Manuscript received June 25, 1965.

other possibility, when the ratio K,(Y) /Ko(y,l

is constant over the cross section, allows for

the existence of all LSE modes. Otherwise
it seems that six-component hybrid modes

are generally required.

Holmes’s theory, whose importance lies
in its simplicity and usefulness, would be-

come significantly less convenient if hybrid
modes were employed. As he has alreacly

shown, transverse-electric and magnetic
modes can exist in a homogeneous, uniaxial
medium and—since the IVKE, SOIution is a

slow-variation approximation to begin with
—it is entirely reasonable to use them 10

study slight inhomogeneities. However, it is

not difficult to see that LS modes can also

exist under these conditions,
Assume the z component of electric field

to be

1?. = A sin kcx. sin kuy (43)

where

k= = mr/a (44)

and

k. = mr/b. (45)

Taking H,= O, we find from (30) that

aHz –juOK. aE,

s= r “z

—ju&LKo—— A cos k.:c. sin k.y. (46)
r

H, =
jmeOkcKo
— A CCJSk.. COSk,y. (47)

rku

The other term which results from the in-

tegration of (46) is not a function of y a} ~d

can be discounted on physical grounds.
Since E. and H. are now both known, the
rest of the field components may be derived
from (28) to (31). Substituting the appro-

priate components into (32 ), (38c) resu!l ts
and completes the description of the long i-
tudinal-section magnetic (LSM ) modes.

If now we take E.= O, we find the follow-
ing from (28) and (43):

H,= :;,— A COSkcx . COSk,y. (4[3)

The remaining field components of the LSE

set may be derived easily. Substituting into
(33), (38d) is found.

As a result of the preceding discussic, n,
it is evident that LS modes are allowable
solutions in a rectangular waveguide com-
pletely filled with a homogeneous, uniaxial
medium. By the same physical reasoning
that Holmes used, solutions in a slight Iy
inhomogenerms medium COUICI equally have

been approximated by them. As these modles

are the correct ones for an inhomogeneous,

isotropic guide, their use instead of a TE (or

TM set should be at least marginally

beneficial in this case. It seems reasonable

to expect that in this way Holmes’s theory

should give better answers, as the inhorrlo-

geneity increases, than might otherwise be

obtained. This presumed advantage may

turn out to be of negligible practical imp-
ortance but it is worth bearing in mind.

As we are bordering on the subject, I
would like to carry this correspondence just
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a little further in order to point out an ap-
parent anomaly in the use of hybrid modes.

In addition to the problem just dis-
cussed, six-component hybrid modes have

been found to be necessary for general
solutions in ferrite-loaded rectangular wave-
guides8, 9 and in rod-loaded, dielectric or

ferrite, circular guides.”o Hybrid mode

solutions have been found by taking linear

combinations of TE and TM modes in each
region and matching all fields parallel and
fluxes normal to the discontinuity; in prac-
tice, it is necessary to match only four com-

ponents to achieve this. To check this
method, we will compare the results ob-

tained in a particular problem which is
solved by both hybrid and LS modes.

Consider an isotropic, rectangular wave-

guide divided into two transverse regions
having different dielectric and magnetic

properties. The interface, in the x-z plane,

occurs at y = c and the guide sidewalls are
at y = O and y = b. Propagation is in the z
direction. The TE and TM solutions are

known in each region and are to be com-
bined in proportions to be determined by
matching considerations. There are four un-
known amplitude constants. By matching

four field components across the boundary,
the unknown constants may be eliminated,

resulting in an eigenvalue equation.

Matching E,, H., E., and H% at y= c we
find after some algebraic manipulation, that

These hold for all kz. To be sure that (52)

is not the same as (54), a numerical solution
of the latter was substituted into the former
and found not to be satisfactory. This must
almost certainly be true of (49) and (53)

as well. Even though the fields are com-

pletely matched in all cases, the eigenvalue

equations obtained are inconsistent !

As a variant of the previous hybrid ap-

proach, six-component hybrid modes were
formed by taking combinations of LSE and
LSM modes (where before, TE and TM
pairs were used). First of all, D. and By
were matched. Then, when E. and E. were
matched, (53) resulted; when Hz and H.

were matched, (54 ) was obtained. No dis-
agreement appears here as the eigenvalue

equations turn out correctly.

It is difficult to believe that (49) and

(52 ) are completely wrong. After all, they
were derived from modes that individually
satisfied Maxwell’s equations in the homo-

geneous regions and, taken in pairs, the in-

ternal boundary as well. Note that (53)

and (54) result from (49) and (52) when
k%= O is substituted. Although this condi-
tion is not physically realizable for LSM
modes and is unduly restricting for LSE
modes, it suggests that there are particular

values of k. (not necessarily zero) for which
correct solutions of (49) and (52) may be
found. It is likely that these roots corres~ond

to a restricted range of solutions and there-

elkwj (kzz + ktizz) . cot kulc + ezk~z(k.zz+ kulz) cot kuz(b — G)

kz’k,’(k,’ – k,’) (p],, – /.L2E2)—— – (49)
Mlkyl(kzz + kujz). tan kulc + mkuq(kzz + kti,z). tan kti~(b – c)

where the cutoff relation is

k.’ + k.’ + k,’ = k’ (50)

and

k. = – jr. (51)

The subscripts 1 and 2, on k, and k, refer to

the regions in which O <y <c and c< y <h,

respectively. k. and k, must be the same in

both regions so that the fields will be
matched for all x and z. k. is given by (44).

If now, E,, H,, E., and Du are matched,

(52) results.

fore furnish incomplete sets. Examination
may reveal that all the roots of (49) satisfy

(53) although, as was evident from the
numerical example, the converse is not al-

ways true.

Because of the questionable result ob-
tained, there is a good case for a critical re-

examination of the derivation and use of
hybrid modes. There is something unsatis-

factory about the present method and, un-
less the example given is fallacious, a num-

ber of similar studies will have to be recon-
sidered.

k,’(k,’ – k,’) [p,,,(k.z + k.,’) – p,e,(.k.’ + k.,’)].
. (52)

e,kvl(k.z + kujz). tan kul(b — c) + ejkuj(kzz + kulz). tan k~lc

The eigenvalue equations (49) and (52)
are both rather involved. We know, on firm
theoretical grounds, that LS modes should
give correct results. Therefore, using LSM

and LSE modes respectively, the following
are found:

Q kuz cot kulc
— —— —

k., cot ku,(b – c)
(53)

El

iJ2 ku, cot kuJb – c)
— —— —

kul cot ku,c
(54)

P1

8G. Brazilai and G. Gerosa, ‘<Modes in rectangular
guides filled with magnetized ferrite, ” NUOZJOCiwzeEto,
vol 7, P. 685, 1958.

9 B. Lax and K. J. Button, M{cvowazIe Fen+tes and
Fewiwagnetics. New York: McGraw-Hall, 1962, pp.
388-399.

10 P. J. B. Clarricoats, “Propagation along un-
bounded and bounded dielectric rods, ” (two parts.),
P?’oc. IEE (Lmzdo%), vol. 108C, pp. 170–s6, March
1961.

Measurement of Cutoff Frequencies

Measurements of guide wavelengths and
cutoff frequencies are often of interest in
experimental investigations of waveguides
with general cross sections. When necessary
measuring equipment is not available, the
phase constant measurement described by

Manuscript received July 1, 1965. The work re-
ported here was supported by the National Aero-
nautics and Space Administration partially funded
under NsG-381.

Altschulerl provides a simple method of de-
termining the cutoff frequency, which is
readily obtainable from the phase constant

of the waveguide. However, if a more accu-
rate determination is required, the preceding
method may not be adequate. A more ac-

curate and convenient method for determin-

ing cutoff frequencies is presented here.
It is assumed that the waveguide under

consideration is uniform, cylindrical, and
with an arbitrary cross section. It is possible
to form a resonant cavity by shorting both
ends of a guide. Through an iris in one of the
shorts, energy is fed into the cavity, and
resonance is observed using a directional
coupler and a detector setup as shown in

Fig. 1. Let .fo and j, be two resonant fre-
quencies of the cavity with fQ larger than ~0.

The two resonant modes must be in the same

transverse variation with only the number

of longitudinal variations differing by an
integer q. In other words, if m and n repre-

sent the transverse variational numbers, and
p represents that of the longitudinal, then

.fo is in the (m, n, p) mode, and fc is in the
(WZ,n, @+q) mode.

Fig. 1. Simplified diagram for observing
cavity resonance.

The electrical length of a waveguide with

two ideal shorts on both ends is a multiple
of ~ radians. However, due to the coupling
iris in one of the shorts, the length differs

from the ideal case by a fraction 3.’ At the

resonant frequency ~0, the electrical length
is expressed as follows:

pod = (N – h+r (1)

where BO is the phase constant, d is the
physical length of the line, and N is an in-

teger.
The physical length of the cavity at

resonance is a multiple of half guide wave-
lengths. In a similar argumentz the length is

d = (N – ~,)xo/2 at fO (2)

and

d = (N– 8, + q)&,/2 at f, (3)

where k~ and k~ are the guide wavelengths

at f 0 and f q, respective y. Using ( 1)–(3 ) and
eliminating N results into

2d = (q+& – &)&kO/(AO – x.). (4)

If the frequency range of operation is not
too wide, the fractions 80 and CTrare almost
equal, as will be demonstrated later. Equa-
tion (4), therefore, reduces to

q/2d = l/Xq – l/ko (5)
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