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Fig. 2. Layout of recent switch.

A valid comparison also requires the use
of similar diodes. The IN119 seems to be
no longer available in the configuration used
in 1961, but Philco switching diodes which
are still available yielded similar results.

Because of its simplicity (Fig. 1) the
earlier switch offers the advantages of 1)
comparatively little measurement data or
calculation required for its design; 2) good
matching almost everywhere in the band
for the “pass” condition, which comes about
from the close placement of the diode to the
junction (wider bandwidth of attenuation,
as much as 2 per cent, can also be obtained
from this feature); and 3) the ability to
attenuate any {requency in the band, as
determined solely by the position of the
short. This switch is, in fact, most often
used with a sliding short, so that the operat-
ing frequency can be changed at will. Diode
placement favors the use of an H-plane tee
for this switch, while the recent switch
(Fig. 2) could supposedly be built equally
well in the E or H plane.

An evident disadvantage is that the
early switch must operate into a better
match because of its close involvement in
the junction. But because of these considera-
tions, it is recommended that this switch be
considered in applications using the recent
design, especially in laboratory work, where
flexibility is often desirable.

D. L. REBscu

Microwave Physics, Aerospace Div.
Westinghouse Electric Corp.
Baltimore, Md.

Author's Comment*

Although our narrow-band waveguide
switch! is of the same generic type (a band
reject design in waveguide using diodes) as
the one previously described, it is difficult to

4 Manuscript received June 25, 1965.
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envisage any two switches in this category
as different as these, both electrically and
mechanically. The most striking difference
in performance is evident from our Fig. 6,
where it is shown that the isolation curve
shifts by about 120 Mc/s for a change in
diode state. According to Rebsch’s corre-
spondence of 1961,2 the isolation of his
switch is only present when the diode is
forward biased. Perhaps Rebsch can be
more specific about the electrical similarity
he sees in these switches.

The central aim of our paper was to
present a switch design which parallels the
synthesis of passive band reject filters, and
which therefore could be used in the design
of switches for a wide variety of applications.
By this procedure many of the difficult im-
pedance matching problems associated with
other types of switches are avoided. The
degree to which this aim has been achieved
is evident from our Figs. 6 to 8 which show
a comparison of measured and computed
responses as an example of the effectiveness
of the synthesis procedure. It is significant
that our design procedure is quite insensitive
to the precise nature of the diode (and
mount) impedance in either of the two states.

We agree that Rebsch’s design presents
matching problems, especially in the design
of cascaded stages for the pass condition.

His other comments are rather general
and therefore difficult to answer specifically,
but we suggest that most engineers do not
mind making calculations and measure-
ments if the results are predictable. As a
matter of fact, to be able to do so, is a
rather delightful experience not encountered
as often as one would like,

H. J. PEPPIATT

A. V. McDANIEL, JR.
J. B. LINKER, JRr.
General Electric Co.
Lynchburg, Va.

Acceptable Mode Types for
Inhomogeneous Media

This correspondence is prompted by
Holmes’s papert in which he presented a
study of the use of the WKB approximation
for the solution of the wave equations in a
rectangular waveguide inhomogeneously
and continuously loaded across the broad
dimension. I would like to point out the
form of the acceptable mode types in such a
waveguide.

Maxwell's equations are

E = — jwuH (1)
H = jweE. @)
Assume that x and e are functions of posi-

tion. Taking the curl of (2) and substituting
(1) we get

VXVXH=VheX (vXH+FPH (3

Manuscrlpt received February 23, 1965.

D. A. Holmes, “Propagation in rectangular
wavegulde containing inhomogeneous, anisotropic
dielectric,” TEEE Trans. on Maucrowave Theory and
Technigues, vol. MTT-12, pp. 152-5, March 1964.
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where
v
Vine=— (4)
€
and
k? = wlue. (5)
Since
V-B=VuH4uw-H=0, (6)
then
VH=—~HvVihu (7
with
A% )
Ving =2 (8)

I3

As a result, the left-hand side of (3) may be
written

VXVXH=vv-H —-vEH

=~V(H-Vinu) — VH (9)
and (3) becomes
(V2 0
=(WVXH XVine—VEVIng. (10)
Similarly,
(V4 E)E

=(VXEXVhhu—VEVine. (I1)

Equations (10) and (11) are the wave equa-
tions for inhomogeneous media.

Consider now a rectangular waveguide
in which g and/or ¢ are functions of y only.
As a result,

9
Vine=d@,—1Ine (12)
a9y

0
Ving =iy —In . (13)
ay

Equations (14), (15), and (16) are the com-
ponents of (10) when expanded in the rec-
tangular coordinate system.

(Vz-l—kz)Hx
17} a3
= ——Hx ln — — H,—1In (ne) (14)
dy dy dx dy
(V2+ k3 H,
4] a i
=——H,—Iny—H,—1 15
oy v 5y nm vy H (15)
(V2+k2)H

= é—y H, ~—l ne— — H vy
Expressions for the components of (11) are
identical in form and, with the obvious sub-
stitutions, the following argument holds
for electric fields as well.

Take x and y as the transverse coor-
dinates and 2z as the direction of propaga-
tion. We now look for modes in which one
of the components of magnetic feld is non-
existent. The possibilities are as follows.

H.=0
From (16),
a

— Hy—
9z ' a

Jn (o). (16)

ln (ue) = 0. 1n

This can occur when

1)ue=constant, being a trivial case.
2) H,#f(z). Impossible for a wave
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travelling in the z direction unless H, =0 as
well as H,. This implies a TEM wave which
cannot exist in an enclosed region. At any
rate, consideration of the electric fields of a
TEM wave in such an inhomogeneous me-
dium will show that E, must also disappear.
Only E, and H, are then left and that is an
impossible solution.

H,=0
From (14),

o a
—y—] =0 18
6xy6y n (ue) (18)

which is satisfied when

1) ue=constant (as the preceding).

2) H,#f(x). This is a quite acceptable,
although peculiar, case corresponding to
solutions of the TE,, type with electric field
along ». H,=0 also satisfies (18) but, as H.
is missing, this is an impossible solution of
Maxwell's equations inside a waveguide.
The analogous study of (11) leads to
E,5f(x) which means that E,=0. This in-
dicates again that TE.. modes are accept-
able. (Notice that a TEM wave travelling
in the y direction would be permissible on an
open structure.)

H,=0

Equation (15) is identically zero. The
wave equations for the magnetic fields are
now

] )

(V24 E)H, = —H,—1Ine (19)
dy oy
] ]

(Vi+E)H, =—H,—Ine (20)
ay ~ay

which can have no inconsistencies between
them. If the solution for H can be found,
then the electric field is given by (2).

The result of the preceding analysis is
that longitudinal-section (L.S) modes? (E,=0
or H,=0) are shown to be the normal ones
for such a waveguide as they are the only
ones not requiring the stipulation of im-
possible or restricting conditions. Unfor-
tunately, Holmes has developed his theory
in terms of TM or TE modes (i.e,, H,=0
and E,=0, respectively). There is no ap-
parent reason, however, that the theory
cannot be easily altered. That part of the
paper dealing with TEo, modes (which are
a particular type of LS mode with E,=0)
is apparently cotrect.

By an argument almost identical to that
which has gone before, it follows that LS
modes are inadmissible solutions when
we=f(z). In this case, TM and TE modes
are required. Therefore, TEy, modes, which
are of both the TE and LS types, are valid
for waveguides in which ue is a function of
the direction of propagation and of one
transverse coordinate.

A slab-loaded waveguide represents the
limiting case of a rapid but finite change of,
say, dielectric constant. It has long been
known3 that one cannot choose just any

2 R. F. Harrington, Time-Harmonic Electromag-
netec Field, New York: McGraw-Hill, 1961, pp. 152—
1

3L, Pincherle, “Electromagnetic waves in metal
tubes filled longitudinally with two dielectrics,”
f‘ghgz Rey., vol. 66, pp. 118-30, September 1 and 15,

mode type and attempt to match transverse
components at the boundary without the
danger of inconsistencies in deriving the
eigenvalue equation. Matching only one
electric and one magnetic component across
the interface does not ensure that the other
transverse components are likewise matched,
The reason for such inconsistencies in
boundary matching is evident. The regions
being considered are not simply the dielec-
tric and air ones. There is another—the
transition region—and modes must he
chosen that are appropriate to it as well.
When such a transition region is of vanish-
ingly small extent, the retardation across
it is negligible and the tangential fields (or
normal fluxes) may be equated through it.
This approach obviates the necessity of
solving the inhomogeneous wave equation
explicitly. In spite of this simplification, the
normal modes must still be of the type, at
least across the inhomogeneous region.

It was rather optimistically thought that,
as a direct extension of the rectangular
waveguide results, modes of the form
E.=0 and H,=0 would prove satisfactory
for a radially inhomogeneous circular guide.
Although it is impossible to find modes with
a missing radial component (except for the
TEs, and TM,,), a linear superposition of
degenerate TE and TM waves can be
formed in such proportions that either of the
radial components can be made to vanish
at any chosen radius 7. Then, it was hoped
that these new modes would be solutions for
a circular guide loaded with a rod of that
radius.

For a radially inhomogeneous guide,

i}
Vhhe=d,—1Ine (21)
or
and
a3
Ving =4, —In g (22)
or

Expanding (10) in cylindrical coordinates
and separating components, several possi-
bilities can be studied.

H.=0

We find, from the expression for the 7
component, that

9

— Hy, = 0.

o9 9 (23)
Therefore

Hy 5= f($). (29

Only the TM,, mode satisfies both (24) and
H.=0. This shows immediately that a com-
plete set cannot be formed in this way. The
other cases follow.
Hy=0
From the ¢-component expression,
2 9 a J
2l H o= — L H—In(ue). (25
7’6¢T 3 rarn(ﬂf) ( )
This holds for
1) TE,, modes and when

2) per® (or kr) is a constant. This places
a restriction on the loading.

H,=0
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The z component gives
a a
— H,—1 =0 26
0 (ue) (26)

which is true for

1) TM,, modes.
2) ue-constant. This is the trivial case of
uniform loading.

A similar analysis of (11) will give iden-
tical results if, in the preceding TM,, and
TEy, are interchanged and the components
of E are substituted for those of H. Then,
since five-component modes are in general
unsatisfactory, it is clear that six-component
hybrid modes must be used. Hybrid modes
are also found to be required for circum-
ferential inhomogeneities, again with the
exception of the TMy, and TE, wave types.
For z inhomogeneities, TM and TE modes
are acceptable.

A, WEXLER

Dept. of Elec. Engrg.
Imperial College,
London, England

D. A. Holmes*

I particularly apprecidte and welcome
Wexler’s articulate and rather adroit com-
ments because they permit me to compen-
sate for the brevity from which my paper?
suffers. In the first place, I wish to point out
that the results presented in that paper were
derived for a nearly uniaxial material, i.e.,
K (x)==K,(x). Upon re-examination, I find
that the distinction between K,(x) and
K,(x) is not worth retaining. I suggest that
the previously derived solutions! be applied
only to a strictly uniaxial material oriented
such that the optic axis is parallel to the
direction of propagation. This can be ac-
complished by using the definitions®

o) = Ko@) = Ko(), Ku(x) = Ko@), 27)

where K,(x) and K,(x) can be called the
ordinary and extraordinary dielectric con-
stants, respectively. In keeping with (27), I
shall consider a uniaxial material in the work
to follow.

As a prelude to further discussion, con-
sider the following mathematical develop-
ment. By assuming exp(jwt—Tz) variations
in all electric and magnetic field compo-
nents, the Maxwell curl equations can be
written in the form

gE, = — T(9E./dy) + joro(0H./3x), (28)

gE, = — T(E./0%) — joumi(0H./dy), (29)
gHy = — T(0H./8y) — jweK,(x)(0E./dx), (30)
§H: = ~— T(0H./3x) + jwek (%) (OE./8y), (31)
dE,/8x — OE,/dy = — jwumH,, (32)
OHy /3% — 9H,/dy = jweK{x)F,  (33)
where

g = T? + k?Ko(x).

4 Manuscript received April 12, 1965.
5 Except when specified otherwise, my notation
here is the same as that used in my earlier work.!
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By assuming that
H,=0, E,= Eyru(x)-sin (may/b), (34

and substituting (34), (30), and (31) into
(33) we obtain

1 o g Wy
™

%'I- By =0,  (35a)

atM 0% dx
where
K,(x)
=—, 35b
mt Tru? 4 k2K, (x) (35b)
K, 2
fr? = 8 (ﬂ . (359
o™ b

By assuming that
E, =0, H,= Hyrr(x) cos (mry/b), (36)

and substituting (36), (28), and (29) into
(32) we obtain

1 9 ; NTE
QaTE

; + Bre%e =0, (37a)

aTg 0% x
where
ars = P2 + k2K ()], (37b)
1 2
Bre? = — — (1%_7:) . (37¢)
aTE b

Although I have attached TE and TM
subscripts to various quantities in (34)-(37),
the preceding development clearly does not,
in itself, justify a decomposition into TE
and TM modes. When (34)—(37) are used to
obtain the solutions listed in Sections IT and
ITT of my previous paper,! using the def-
initions (27), it is found that the listed solu-
tions do not rigorously satisfy the Maxwell
curl and divergence equations. Imbedded in
the WKB approximation, however, is the
restriction that K,(x) and K (x) are slowly
varying functions of x. It is of interest to
discuss the logical limit of the slow varia-
tion case, namely, that of a homogeneous
medium for which K (x)=K, K,(x)=K,,
where K, and K, are constants. For a
homogeneous uniaxial medium wholly filling
the rectangular waveguide, a decomposition
into TE and TM modes is valid; for this
case we find

Y1E = cos (nrx/a), (38a)
Yrm = sin (nrx/a), (38b)
Tre? = (mw/b)? + (nr/a)? — kK, (38c)

Tru? = [(mr/B)2 + (nrr/0)?] - (Ko/Ko)
— ByK,. (38d)

The electric and magnetic fields found from
(38) satisfy the boundary conditions for per-
fectly conducting walls and satisfy all of the
Maxwell equations.

In approaching the slow variation case,
my reasoning was more physical than math-
ematical. In light of the preceding discus-
sion of the homogeneous case, it seems en-
tirely reasonable that propagation in a
slightly inhomogeneous medium can be
classified into a mode structure which is
nearly TE or TM. Based on this physical
reasoning, my procedure was to search
for TE and TM modes with the results
(34)-(37). WKB solutions never rigorously
satisfy the differential equations from
whence they came, however, the particular
solutions given by me! do satisfy the bound-
ary conditions at the waveguide walls and
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represent approximations which become
exact in the homogeneous limit,

I feel that the general area of slight in-
homogeneities or slow variations is a “no
man’s land” which, undoubtedly, may be
approached on many trajectories. For the
specific problem which I have considered, [
cannot claim, at this time, that my treat-
ment is more general than, or preferable to,
an alternative approach.8 My contribution
is that the TE and TM mode WKB ap-
proach provides predictions which the ex-
perimentalist can test in the laboratory.

D. A, HoLMES

Dept. of Elec. Engrg.

Carnegie Institute of Technology
Pittsburgh, Pa.

8 Observe that Wexler's discussion of longitudinal-
section electric (LSE) and longitudinal-section mag-
netic (LSM) mode propagation in an isotropic medium
would require modification in order to allow inclusion
of a uniaxially anisotropic medium.

A. Wexler?

Holmes is quite correct in noting that
my comments apply to isotropic media and
require modification if an anisotopic me-
dium is considered. To follow his suggestion,
one interesting case will now be investigated.
The components of the tensor permittivity
are taken as defined in (27). The permeabil-
ity is taken to be a constant scalar at the
free-space value ug. As I previously assumed
the medium to be a function of y, this cor-
respondence will continue in that way.
Holmes takes it to vary along x but this
should cause no confusion.

Taking the curl of (1), substituting (2),
and rewriting the left-hand side of the
wave equation, we obtain

V(V-E) — VIE = ko2(i1,Ko() Bz + #5,K, (%) Ey

+ @K () E.). (39)
Since v-D=0, we find that
0L, oF aK,
&) 22 4 ko) 22 1 g, 2
dx ay ay
ak,

+ K.() o 0. (40)

The first two terms of (40) can be sub-
stituted into the expansion of V- E, giving

- oE,

V-E = (1 — K.9)/Ko(¥)) a2

— (BJES) %y@ R

By substituting (41), the y component of
(39) is found in a convenient form. When
this is done we may put E,=0, producing
the following condition for the existence of
longitudinal-section electric (LSE) modes:

i) )M
a—y— [ - Ko)/E0) aZ] —0. )

Equation (42) holds when E,=0. And so,
TEo, modes are of a legitimate type in
this uniaxially anisotropic medium. The

7 Manuscript received June 25, 1965.
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other possibility, when the ratio K, (y)/K«y)
is constant over the cross section, allows for
the existence of all LSE modes. Otherwise
it seems that six-component hybrid modes
are generally required.

Holmes's theory, whose importance lies
in its simplicity and usefulness, would be-
come significantly less convenient if hybrid
modes were employed. As he has already
shown, transverse-electric and magnetic
modes can exist in a homogeneous, uniaxial
medium and—since the WKE solution is a
slow-variation approximation to begin with
—it is entirely reasonable to use them lo
study slight inhomogeneities. However, it is
not difficult to see that LS modes can also
exist under these conditions.

Assume the z component of electric field
to be

I, = A sin kyx-sin kyy 43%)
where
ks =nw/a (44)
and
ky = mx/b. (45)

Taking H,=0, we find from (30) that
oH, _ —jweK, OE,

3y r dx
= M A coskyx-sinkyy. (46)
Integrating,
H, = M’ A cos ksx-coskyy.  (47)

Tk,

The other term which results {from the in-
tegration of (46) is not a function of y and
can be discounted on physical grounds.
Since E. and H, are now both known, the
rest of the field components may be derived
from (28) to (31). Substituting the appro-
priate components into (32), (38¢) results
and completes the description of the longi-
tudinal-section magnetic (LSM) modes.

If now we take E, =0, we find the follow-
ing from (28) and (43):

JTky

Wiz

H, =

A coskzx-coskyy.  (48)

The remaining field components of the LSE
set may be derived easily. Substituting into
(33), (38d) is found.

As a result of the preceding discussion,
it is evident that LS modes are allowable
solutions in a rectangular waveguide com-
pletely filled with a homogeneous, uniaxial
medium. By the same physical reasoning
that Holmes used, solutions in a slightly
inhomogeneous medium could equally have
been approximated by them. As these modes
are the correct ones for an inhomogeneous,
isotropic guide, their use instead of a TE or
TM set should be at least marginally
beneficial in this case. It seems reasonable
to expect that in this way Holmes's theory
should give better answers, as the inhomo-
geneity increases, than might otherwise be
obtained. This presumed advantage may
turn out to be of negligible practical ir-
portance but it is worth bearing in mind.

As we are bordering on the subject, |
would like to carry this correspondence just
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a little further in order to point out an ap-
parent anomaly in the use of hybrid modes.
In addition to the problem just dis-
cussed, six-component hybrid modes have
been found to be necessary for general
solutions in ferrite-loaded rectangular wave-
guides®® and in rod-loaded, dielectric or
ferrite, circular guides.®!® Hybrid mode
solutions have been found by taking linear
combinations of TE and TM modes in each
region and matching all fields parallel and
fluxes normal to the discontinuity; in prac-
tice, it is necessary to match only four com-
ponents to achieve this. To check this
method, we will compare the results ob-
tained in a particular problem which is
solved by both hybrid and LS modes.
Consider an isotropic, rectangular wave-
guide divided into two transverse regions
having different dielectric and magnetic
properties. The interface, in the x-z plane,
occurs at y=c¢ and the guide sidewalls are
at y=0 and y=25. Propagation is in the z
direction. The TE and TM solutions are
known in each region and are to be com-
bined in proportions to be determined by
matching considerations. There are four un-
known amplitude constants. By matching
four field components across the boundary,
the unknown constants may be eliminated,
resulting in an eigenvalue equation.
Matching E,, H;, E., and H, at y=c¢ we
find after some algebraic manipulation, that
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These hold for all k,. To be sure that (52)
is not the same as (54), a numerical solution
of the latter was substituted into the former
and found not to be satisfactory. This must
almost certainly be true of (49) and (53)
as well. Even though the fields are com-
pletely matched in all cases, the eigenvalue
equations obtained are inconsistent!

As a variant of the previous hybrid ap-
proach, six-component hybrid modes were
formed by taking combinations of LSE and
LSM modes (where before, TE and TM
pairs were used). First of all, D, and B,
were matched. Then, when E, and E, were
matched, (53) resulted; when H, and H,
were matched, (54) was obtained. No dis-
agreement appears here as the eigenvalue
equations turn out correctly.

It is difficult to believe that (49) and
(52) are completely wrong. After all, they
were derived from modes that individually
satisfied Maxwell’s equations in the homo-
geneous regions and, taken in pairs, the in-
ternal boundary as well. Note that (53)
and (54) result from (49) and (52) when
k=0 is substituted. Although this condi-
tion is not physically realizable for LSM
modes and is unduly restricting for LSE
modes, it suggests that there are particular
values of %, (not necessarily zero) for which
correct solutions of (49) and (52) may be
found. It is likely that these roots correspond
to a restricted range of solutions and there-

e1ky1{ks® + kys?) - cot kyic + eskyo(k.? 4 Epn?) - cot kya(b — ¢)

k2,2 (ko — k1% (uaer — msen)

(49

- kg1 (Be? + Eyo?) -tan kyic + uokya(ke?2 + kyi2) - tan kya(d — ¢)

where the cutoff relation is

k2t Ry RS = Rk (50)
and

k= — 4T (51)

The subscripts 1 and 2, on k, and &, refer to
the regions in which 0<y<¢ and ¢<y<?,
respectively. &, and %k, must be the same in
both regions so that the fields will be
matched for all x and 2. ks is given by (44).

If now, E,, H., E., and D, are matched,
(52) results.

fore furnish incomplete sets. Examination
may reveal that all the roots of (49) satisfy
(53) although, as was evident from the
numerical example, the converse is not al-
ways true.

Because of the questionable result ob-
tained, there is a good case for a critical re-
examination of the derivation and use of
hybrid modes. There is something unsatis-
factory about the present method and, un-
less the example given is fallacious, a num-
ber of similar studies will have to be recon-
sidered.

puiky1(ke® + kya?) - cot kyo(b — ©) -+ poky2(k.? + k2 -cot kyic

Be2(ka? — D) [usea(Be? + kn® — mer(Be? + Eyo?))

The eigenvalue equations (49) and (52)
are both rather involved. We know, on firm
theoretical grounds, that LS modes should
give correct results. Therefore, using LSM
and LSE modes respectively, the following
are found:

€ Fya cot kyic

—_— = —— 53
€1 l’y] cot ky2(b - E) ( )
B kya cot kBy2(b — ¢) ) 8
F51 kyl cot ]?y]&

8 G. Brazilai and G. Gerosa, “Modes in rectaneular
guides filled with magnetized ferrite,” Nuovo Cimenio,
vol 7, p. 685, 1958,

9 B. Lax and K. J. Button, Microwave Ferrites and
Fervimagnetics. New VYork: McGraw-Hill, 1962, pp.
388399,

10 p, J. B, Clarricoats, “Propagation along un-
bounded and bounded dielectric rods,” (two parts.),
Zgi IEE (London), vol. 108C, pp. 170-86, March

erky1(ka? -+ bys?) -tan kyo(b — 0) - eskya(hs® + ki) -tan by

(52)

Measurement of Cutoff Frequencies

Measurements of guide wavelengths and
cutoff frequencies are often of interest in
experimental investigations of waveguides
with general cross sections. When necessary
measuring equipment is not available, the
phase constant measurement described by

Manuscript received July 1, 1965. The work re-
ported here was supported by the National Aero-
nautics and Space Administration partially funded
under NsG-381.
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Altschuler! provides a simple method of de-
termining the cutoff frequency, which is
readily obtainable from the phase constant
of the waveguide. However, if a more accu-
rate determination is required, the preceding
method may not be adequate. A more ac-
curate and convenient method for determin-
ing cutoff frequencies is presented here.

It is assumed that the waveguide under
consideration is uniform, cylindrical, and
with an arbitrary cross section. It is possible
to form a resonant cavity by shorting both
ends of a guide. Through an iris in one of the
shorts, energy is fed into the cavity, and
resonance is observed using a directional
coupler and a detector setup as shown in
Fig. 1. Let fo and f, be two resonant fre-
quencies of the cavity with f, larger than fo.
The two resonant modes must be in the same
transverse variation with only the number
of longitudinal variations differing by an
integer ¢. In other words, if m and # repre-
sent the transverse variational numbers, and
p represents that of the longitudinal, then
fo is in the (m, », ) mode, and f, is in the
(m, n, p+q) mode.

detector

Directional
Waveguide under test

— iris short
frequency -swept } ]

signal

Fig. 1. Simplified diagram for observing

cavity resonance,

The electrical length of a waveguide with
two ideal shorts on both ends is a multiple
of 7 radians. However, due to the coupling
iris in one of the shorts, the length differs
from the ideal case by a fraction 8.2 At the
resonant frequency fy, the electrical length
is expressed as follows:

Bod = (N — 8)w 1

where Bo is the phase constant, d is the
physical length of the line, and N is an in-
teger.

The physical length of the cavity at
resonance is a multiple of half guide wave-
lengths. In a similar argument? the length is

d = (N — de)ho/2 at fo (2)

and

d = (N— 38 + qr/2 atf, (3
where \¢ and A, are the guide wavelengths
at fo and f,, respectively. Using (1)-(3) and
eliminating N results into

2d = (g + 8o — 8N/ (ho — A, (4)

If the frequency range of operation is not
too wide, the fractions 8, and 8§, are almost
equal, as will be demonstrated later. Equa-
tion (4), therefore, reduces to

9/2d = 1/x — 1/% &)

* H, M. Altschuler, “Attenuation and phase con-
stants,” in Microwave Measurements, vol. 3, M. Sucher
and J. Fox, Eds. New York: Polytechnic Press of
Polytechnic Inst. of Brooklyn, 1963, ch, 6.

2H. M. Barlow and A. L. Cullen, Microwave
Measurements. London, England: Constable and Co.
Ltd., 1950, ch, 3.



